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Temperature-dependent resistivity, upper critical field H., and its anisotropy in overdoped superconducting
Ba;_,KFeyAs, (x = 0.6-1) single crystals have been measured in steady magnetic fields up to 44 T and low tempera-
tures down to 0.4 K. Analysis using both the quadratic term and power-law fitting demonstrates that the in-plane resistivity
Pa»(T) progressively approaches the Fermi-liquid T2 behavior with increasing K doping and reaches a saturation plateau at
x = 0.8. The temperature dependence of both Hc"é’ and HY, follows the Werthamer—Helfand-Hohenberg model, incorporat-
ing orbital and spin paramagnetic effects. For x < 0.8, the orbital effect dominates for H || ab, while the Pauli paramagnetic
effect prevails for H || c. For x > 0.8, the Pauli paramagnetic effect becomes dominant in both crystallographic directions.
The anisotropy of Hc,(0) exhibits a discontinuity in its dependence on K doping concentration with a significant enhance-
ment at x = 0.8 and a maximum at x = 0.9. These experimental results indicate that the electron correlation effect is
enhanced in the heavily overdoped Ba;_,KFe;As, system where the underlying symmetries are broken due to the Fermi

surface reconstruction before x = 0.9.
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1. Introduction

The upper critical field H(T') of type-II superconduc-
tors reveals fundamental properties such as pair-breaking
mechanisms, Fermi surface anisotropy, and multiband effects.
Within the framework of BCS theory, magnetic fields can sup-
press spin-singlet superconductivity either through the Zee-
man effect, which disrupts spin-singlet pairing, or through or-
bital effects that modify electronic trajectories.!!"?! Iron-based
superconductors exhibit significant potential for applications,
particularly in high magnetic fields, owing to their exception-
ally high H., and low anisotropy v (y = Hc“zb /HS,, typically
ranging between 1 and 2).13-8 Recent advancements in doping
strategies and structural optimization have further enhanced
the superconducting properties of these materials, facilitating
their advancement toward practical applications.”-*-12]

The 122-type iron-based superconductors crystallize in
the ThCr,Si,>-type tetragonal crystal structure, examples in-
clude AFe,As; (A = Ba, Sr, Ca, Eu, K, Rb, and Cs)[!13-18]
and AFe;Se; (A = Na, K, Rb, Cs, TI, etc.).l'%2?] The par-
Corresponding author. E-mail: hqluo@iphy.ac.cn
fCorresponding author. E-mail: zswang@hmfl.ac.cn

CSTR: 32038.14.CPB.aeldf1

ent compounds of these materials (e.g., BaFe;Asy) are non-
superconducting in their pristine states, but superconductiv-
ity can be induced through chemical doping strategies in-
volving electron doping, hole doping, isovalent doping, or
pressure application.>23-271 Co-doped BaFe, As, single crys-
tals exhibit superconductivity with an onset superconducting
transition temperature of 22 K.!?* Similarly, BaFe,_Ni,As;
single crystals with electron-dominated carriers exhibit a su-
perconducting transition temperature of 20 K under optimal
doping.[>! Substitution of Ba with K enables the synthesis of
hole-doped superconductors.[! ITn contrast to electron-doped
systems, the hole-doped BaFe; As, system exhibits a higher 7
and more complex phase diagram, providing a platform for in-
vestigating the interplay among multiple phases in iron-based
superconductors. 13261

In the Ba;_,K Fe;As, system, hole doping via K sub-
stitution progressively suppresses the Néel temperature Ty,
leading to its full disappearance near the critical doping
level x ~ 0.25.12328291 Superconductivity emerges at x =
0.1, reaches a maximum critical temperature 7; of approx-
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imately 38 K near x = 0.4, and subsequently decreases in
the overdoped region while persisting up to x = 1,115:28-32.34]
It has been reported that underdoped systems exhibit an ex-
ceptionally high upper critical field accompanied by a re-
markably low superconducting anisotropy ratio.3%331 Opti-
mally doped Bag Ko 4FeyAsy exhibits an upper critical field
exceeding 60 T, and its unique Fermi surface topology re-
sults in orbital-limited upper critical fields across all mag-
netic field orientations.[>>! However, at higher doping lev-
els, Ba;_,K,FeyAs, exhibits a deviation from the universal

36-391 Specifi-

trend observed in iron-based superconductors.|
cally, in the composition range of 0.7 < x < 0.8, it exhibits
a novel bosonic metallic state characterized by spontaneous

g.[3640411 Eyrther increasing

time-reversal symmetry breakin
K doping, theoretical calculations based on density functional
theory (DFT) by Khan ef al. predicted a Lifshitz transition
at x ~ 0.9,037] which was subsequently confirmed experimen-
tally in the heavily overdoped regime. 374243 Notably, at the
extreme end of doping (x = 0.95), specific heat measurements
on Bag ¢5Kg.9sFe,As; reveal a three-component superconduct-
ing order parameter and a linear magnetic field dependence of
the specific heat coefficient, indicating the dominant role of
the Pauli-limiting effect.[**] At full substitution, KFe,As; is a
superconductor exhibiting solely hole-like Fermi surfaces and
strong electron correlations, 8! and angle-resolved photoe-
mission spectroscopy (ARPES) measurements have confirmed
it to be a anisotropic s£-wave superconductor, [*’! demonstrat-
ing that even a compound possessing exclusively hole-type
Fermi surfaces exhibits the same gap symmetry as systems
with both hole- and electron-type Fermi surfaces.[*!

In this paper, we report a systematic study of the
Hy, and its
anisotropy in overdoped Ba;_,K,Fe;As; (x = 0.6-1) single

temperature-dependent in-plane resistivity,

crystals. Measurements were performed in steady magnetic
fields up to 44 T and at temperatures down to 0.4 K. The in-
plane resistivity p,,(T) progressively approaches the Fermi-
liquid 72 behavior with increasing K doping. Based on the
Werthamer—Helfand—Hohenberg (WHH) model, the Hc(0)
shows a monotonic decrease, while the zero-temperature
anisotropy parameter Y(0) increases from 1.5 to 2.5 with in-
creasing K concentration. Analysis of the resistivity fitting
parameters, combined with the evolution trends of He(T)
and y(0) with K doping, reveals that the superconductivity
in the overdoped Ba;_ K Fe;As; system undergoe a transi-
tion in the correlation length within the doping range x = 0.8—
0.9. Beyond this range, the electronic correlation effects be-
come significantly enhanced, which is probably related to the
anisotropic gaps in KFe,As,.

2. Experiment

The Ba;_,K,Fe;As, (x = 0.6-1) single crystals were
grown using the self-flux method with FeAs as the flux. De-

tails regarding crystal growth and characterization are de-
scribed in Refs. [31,39]. The doping concentration was de-
termined based on the T values from the phase diagram of
this system in Refs. [40,46]. Figure 1(b) illustrates the posi-
tion of our samples in the phase diagram. The temperature
dependence of the in-plane resistivity under various magnetic
fields — applied parallel to the ab plane (H || ab) and along
the ¢ axis (H || ¢) — was measured using the standard four-
probe method. These measurements were performed at the
Steady High Magnetic Field Facilities, Chinese Academy of
Sciences,*’! where temperatures down to 0.4 K and magnetic
fields up to 44 T using the hybrid magnet were achieved. A
constant current of 1 mA was applied, with the current di-
rection maintained perpendicular to the applied magnetic field
throughout the measurements.

3. Results and discussion

Figure 1(a) presents the in-plane resistivity of five sam-
ples with different doping concentrations in zero field up to
300 K. In order to minimize the influence of size effects and
facilitate the comparison of the variation of the curves, the
resistivity was normalized (p = pu»(T)/par(300 K)). For
clarity, the curves have been offset vertically. As shown, all
the curves display very similar behavior in the normal state. It
is clear that K doping completely suppresses the AF/structural
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Fig. 1. (a) Temperature dependence of the normalized resistivity p =
Par(T)/Pap(300 K) in zero field up to 300 K for Ba;_,K,FeyAs; (x = 0.6—
1) single crystals. The data for each doping are offset vertically by 0.1 for
clarity. The inset is an enlarged graph around the superconducting transition.
(b) Location of our samples (red stars) in Ba;_,KFe,As, phase diagram. The
diagram is adapted from Ref. [46]. The inset of (b) is the doping dependence
of T; for Baj_,K,FeyAs; (x = 0.6-1) single crystals.
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phase transition in the system. All samples exhibit very nar-
row superconducting transition widths, indicating high crystal
quality. The inset of Fig. 1(b) shows the T values for differ-
ent K-doping levels. The T, defined as the temperature cor-
responding to 90% of the normal-state resistivity value, are
approximately 28.5 K, 18.8 K, 11.9 K, 6.3 K, and 5.8 K for
different doping levels.

3.1. Doping evolution of the temperature-dependent resis-

tivity

Figure 2(a) displays the temperature dependence of the
normalized resistivity p for the five samples with different
doping levels, measured in zero magnetic field up to 100 K.
The data reveal that the nonlinearity of the p—T curve be-
comes increasingly pronounced at low temperatures. To pre-
cisely characterize the evolution of the resistivity’s tempera-
ture dependence with doping, we fit the data in the temperature
range from 7; 4+ 5 K to 60 K using a second order polynomial

function 8]

p=ao+auT+oT? (1)

where ap, a, o are the fitting parameters. Figures 2(b)-
2(d) display the variation of these parameters with increasing
K doping level. It is clear that the magnitude of the linear term
o progressively diminishes with higher K doping, while the
quadratic term @ becomes more prominent.
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Fig. 2. (a) Fitting of the temperature-dependent in-plane normalized resis-
tivity p for Ba;_ K, Fe,As, (x = 0.6-1) with the second-order polynomial.
The data for each doping are offset vertically by 0.1 for clarity. (b), (c) and
(d) The fitting parameters o, & and oy for five different doping levels.

The power-law relationship can also be employed to
model the observational data:

B = po+AT", @)

with three fitting parameters pg, A, and n for each curve. Fig-
ure 3(a) displays the logarithmic plot derived from this power
function, where the fitted curve exhibits a slope of n and a Y-
axis intercept of logA. For comparison, power-law analysis
was also performed over the temperature range from 7. +5 K
to 60 K. The resulting fitting parameters A and n are shown in
Figs. 3(b) and 3(c), respectively. As K doping increases, the
coefficient A of the power-law term continuously decreases,
while the power-law exponent n asymptotically approaches
2. It is evident that both fitting results converge towards the
Fermi-liquid 72 dependence. A maximum deviation from
this 7% dependence has been observed at the optimal doping
x = 0.4,149°91 suggesting the presence of a possible quantum

critical point. [?8]
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Fig. 3. (a) Fitting of the temperature-dependent in-plane normalized re-
sistivity p for Baj_ K Fe,As, (x = 0.6—1) with the power-law function.
The data for each doping are offset vertically by 0.3 for clarity. (b) and
(c) The fitting parameters A and n for five different doping levels.

It has been reported that there is a scaling law between T
and the T-linear resistivity coefficient in cuprates and FeSe in

31521 However, Figs. 2 and 3 show

the strange-metal region. !
that the doping evolution of parameters o; and o, (from
quadratic fitting) and parameters A and n (from power-law
fitting) exhibit saturation within the doping range x = 0.8-1.
This saturation coincides with evidence from thermoelectric
power and Hall coefficient measurements indicating the oc-

currence of a Lifshitz transition in this range.>>>#! According
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to the Kadowaki—Woods relation (KWR),3! the quadratic co-
efficient in the low-temperature p—T7 fitting function is propor-
tional to the square of the quasiparticle effective mass (m*?).
Furthermore, the ratio of o to the square of the electronic
specific heat coefficient is a constant. Deviation of this con-
stant from its standard value is regarded as an indicator of
strong electron correlations. > Strong electron correlations
have been established in KFe;As;.’8 For the five samples
in this study, the increase in the quadratic coefficient with
K-doping level signifies an enhancement of electron—electron
correlations within the system. The observed saturation in-
dicates that the strength of these electron correlations has
reached a relatively stable regime.

3.2. Doping evolution of the anisotropic upper critical
fields

Figure 4 displays the temperature and magnetic-field de-
pendent resistivity p,,(T) curves of the Bag 4Kg ¢FexAs, sin-
gle crystal at magnetic fields up to 44 T parallel to the ab
planes and along the ¢ axis, respectively. For the five sam-
ples, the magnetic field induces a parallel shift of the resistive
transition curves toward lower temperatures, suggesting the
presence of field-induced pair-breaking effects in this system.
This behavior contrasts sharply with that observed in cuprate
superconductors, where the resistive transition p(7') broadens
due to the formation of a fan-like structure, while the onset
region remains largely unaffected by changes in the magnetic
field.[56-57]
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Fig. 4. (a) and (b) The temperature dependence of the in-plane resistivity
Pap in single crystal of Bag4Ko¢FeaAsy with H || ab and H || ¢ measured
in a superconducting magnet up to 16 T. (c) and (d) The magnetic field de-
pendence of the in-plane resistivity p,, in single crystal of Bag 4K¢ ¢Fez Asy
with H || ab (T =18.5K,20.1 K, 21.5K,22.6K,23.8K,24.8K)and H || ¢
(T=9.6K,11.0K, 124K, 13.7K, 148K, 16.0K, 17.2 K, 184K, 19.5K,
20.7 K) measured in a hybrid magnet up to 44 T.

The temperature dependence of ngb and H¢, for the five
samples with x = 0.6-1 is shown in Fig. 5 (where Hc(T)
is defined at p = 90%p,).
obtained from field scans, while open symbols denote data

Solid symbols represent data

from temperature scans. Analysis of the low-temperature

resistivity fitting curves (presented earlier) indicates a grad-
ual strengthening of electronic correlations in the x = 0.6—
For the x = 0.8 samples, H%(T) exhibits
a tendency towards saturation with decreasing temperature,

0.8 samples.
whereas HS,(T) shows a quasi-linear increase with no dis-
cernible saturation at low temperatures. The Pauli-limiting
field for a weakly coupled BCS superconductor in the absence
of spin—orbit scattering is estimated asP8! HECS(0) = 1.86T
= 22.1 T for the Bag,KpgFe,As, sample (7, = 11.9 K). Al-
ternatively, the orbital limiting field is given by the WHH for-
mula H%"(0) = —0.69dHcy/dT |77, Tc.1>"! For the x = 0.8
samples, the slopes dHc/dT are —4.07 T/K for H || ab
and —1.39 T/K for H | ¢, yielding H5"*(0) = 33.5 T and
Hfzrb’C(O) = 11.5 T. These estimates disagree with our exper-
imental data. The discrepancies between the theoretical esti-
mates and experimental data are frequently observed in iron-
based superconductors.[”-#32601 This discrepancy arises be-
cause the formula, rooted in isotropic s-wave superconductors,
neglects spin—orbit coupling and Pauli paramagnetic effects.
In contrast, the WHH model incorporates the Maki pa-
rameter o and the spin—orbit scattering constant Ag,, enabling
a more precise description of the experimentally observed

temperature-dependent behavior of He,:1°!
1 - 1 h
Inl-) = — — |2V 41|+ -
n(t> vzm<|2v+1| @ i
(ah/1)" ] 1) 3)
12V + 1|+ (h+As) /1 ’

where 1 = T /T, and h = (4/7%) [Heo(T)/|dHea /dT |1, |. As
shown in Figs. 5(a) and 5(b), the best fit using this model re-
produces both of the experimental Hfzb and H¢, data very well
for all five samples (all fit parameters are listed in Table 1). In
contrast, previously reported iron-based superconductors gen-
erally require a two-band model to fit HS,, such as Co/Ni-
doped iron-based superconductors. 309921 For x = 0.8, we
obtain ng” =222T(ax=2.5and A, =1.5)and H;, = 13.3 T
(ot = 0.5 and Ay, = 4). The results indicate that for sam-
ples with x < 0.8, the orbital effect mechanism dominates for
H || ab, while the Pauli effect prevails for H || ¢. For x > 0.8,
the Pauli effect becomes dominant in both crystallographic
directions (Fig. 5(b)).
anisotropic Y for x = 0.8 is shown in Fig. 6(a). The y parameter

The temperature dependence of the

exhibits a monotonically increasing trend with rising tempera-
ture, whereas in Co-doped electron-type superconductors, the
temperature dependence of y displays a peak near 7..[%3 Tn
the overdoped BaFe, ,Ni,As, superconductor, ¥(0) exhibits
a monotonic increase with doping concentration, [®°] whereas
the overdoped Ba;_,K Fe,As, samples display distinct be-
havior. As shown in Fig. 6(b), there is a pronounced anomaly
in y(0) within the range of x = 0.8-0.9. It can be attributed
to a saturation of the enhanced electron correlation strength
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in this regime, where the system evolves into a strongly cor-
related metallic state after the Lifshitz transition at x = 0.9,
and the superconducting gaps become strongly anisotropic in
KFe;As; (x = 1). However, it is not clear whether the time-
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— Hljab — Hllc |
---- Pauli limit

16

Field (T)

b4 8 12 16 20 24 28
Temperature (K)

reversal symmetry breaking can trigger the enhancement of
electron correlations. Further investigations on the detailed
doping dependence of the band structure are necessary to clar-
ify this issue.
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Fig. 5. Temperature dependence of H; of the five overdoped samples extracted from the magnetotransport measurements. (a) x = 0.6, 0.7, 0.8.
(b) x=0.9, 1.0. The solid symbols are obtained from H-scan measuremengts, and the open symbols are obtained from T-scan measurements.
The solid lines show a WHH fit with the parameter @ and Ay, as given in Table 1 for both Hé‘zb and Hg,. The dotted lines are the WHH
predictions with o = 0 and Ay, = O for both Hé‘zb and Hg,. The black dashed lines show the Pauli limit.

Table 1. Summary of the parameters for the upper critical field for all investigated compositions of Ba;_ K Fe,As;.

x T (K) —dH?/dT (T/K) —dHS/dT (T/K) HS(0) (T) HA(0) (T) HBES(0)(T) a®® AL of AL HYL(0)(T) HS(0)(T) ¥(0)
0.6 285 5.29 1.84 116.3 36.3 529 35 3 1 5 734 48.9 1.51
0.7 188 5.52 1.74 71.9 22.7 35.0 33 05 03 3 35.1 25.6 1.32
0.8 119 4.07 1.39 33.5 11.5 22.1 25 15 05 4 22.2 13.3 1.67
09 63 4.31 0.7 18.8 3.0 11.7 25 1 1 5 11.4 42 2.75
1.0 58 2.98 0.84 12.1 3.4 10.8 31 08 0 O 8.5 33 2.57

3.0 (b) and power-law fitting demonstrates that the in-plane resistivity

25 pap(T) progressively approaches the Fermi-liquid 72 behavior

= ”o with increasing K doping and reaches a saturation plateau at

' x ~ 0.8. The temperature dependence of both Hélzb and Hg, can

1.5 be well described by the WHH model incorporating orbital

1.6

0 2 4 6 8 10 12
Temperature (K)

0.6 07 08 09 1.0
K content =

Fig. 6. (a) The temperature dependence of the anisotropy ¥ for x = 0.8
sample. (b) The anisotropy parameter ¥(0) of the five samples calcu-
lated from the WHH fitting results.

4. Conclusion

The temperature-dependent resistivity, upper critical
field H., and its anisotropy in overdoped superconducting
Ba;_ K Fe,As, (x = 0.6-1) single crystals have been deter-
mined at high magnetic fields up to 44 T and low tempera-
tures down to 0.4 K. Analysis using both the quadratic term

and Pauli paramagnetic limiting effects. The zero-temperature
upper critical field, He2(0), decreases monotonically with in-
creasing K doping. For x < 0.8, orbital limiting dominates for
H || ab, while Pauli limiting prevails for H || ¢. For x > 0.8,
Pauli limiting becomes dominant for both field orientations.
The y(0) exhibits an abrupt change within the doping range
x = 0.8-0.9. These findings demonstrate that the supercon-
ductivity in the overdoped Ba;_,K,Fe;As; is highly sensitive
to the Fermi surface topology and band structure in the range
x = 0.8-0.9. Upon exceeding this doping range, electron cor-
relations are markedly enhanced, driving the system into a
strongly correlated metallic state.
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